2021 Fourth Annual National Conference
September 9-11, 2021
Red Rock Hotel – Las Vegas, NV

Jointly provided by the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers.
Systemic Therapies for HCC

Patrick M. Horne, MSN, APRN, FNP-BC, AF-AASLD
Assistant Director of Clinical Hepatology Research/
Clinical Programs Coordinator
Division of Gastroenterology, Hepatology, and Nutrition
University of Florida
Gainesville, FL
Disclosures

All faculty and staff involved in the planning or presentation of continuing education activities provided by the Annenberg Center for Health Sciences at Eisenhower are required to disclose to the audience any real or apparent commercial financial affiliations related to the content of the presentation or enduring material. Full disclosure of all commercial relationships must be made in writing to the audience prior to the activity. Staff at the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers have no relationships to disclose.
Disclosures

Patrick M. Horne, MSN, APRN, FNP, AF-AASLD

Consultant: AbbVie, Clinical Area – Hepatitis C
Consultant: Fuji-Film Wako, Clinical Area – HCC
Consultant: Gilead, Clinical Area – Hepatitis B, Hepatitis C, NASH
Consultant: Intercept, Clinical Area – PBC, NASH
Consultant: Salix, Clinical Area – Hepatic Encephalopathy
Hepatocellular Carcinoma (HCC)

- Common malignancy worldwide
 - 5th most common cancer worldwide
 - 2nd leading cause of cancer death ~600,000 deaths annually
- US incidence has more than tripled over the last three decades
 - Estimated new cases: ~40,000 new cases annually
 - Fastest rising cause of cancer related death in US, Dismal 5-year survival <15%
- 85%-95% of HCC cases occur in cirrhotic livers
 - Leading cause of death in cirrhosis
- Complex malignancy
 - Heterogeneous etiologies - HCV, HBV, NAFLD, Alcohol
 - Complex molecular carcinogenesis

Natural History of Untreated HCC in a US VA Cohort With HCV as the Predominant Etiology – Mortality by BCLC Stage (n=518)

UNOS/SRTR 2019 Report – Liver Transplants

More Candidates

More Liver Transplants

More ≥ 65

Less HCV

Transplant rates among waitlist candidates by sex and HCC status

Patient Survival by Diagnosis

HCC Screening

- Early diagnosis of HCC improves survival
- Screen patients with cirrhosis
 - HCV cirrhosis post-SVR
- Selected patients without cirrhosis
 - HBV
- **Ultrasound +/-AFP every 6 months recommended in patients with cirrhosis**
- Consensus lacking (benefit uncertain)
 - Hepatitis C and stage 3 fibrosis
 - NAFLD without cirrhosis
- Do not perform in Child’s class C cirrhosis unless on waiting list
- **Majority of patients (~80%) with cirrhosis are not receiving HCC surveillance as recommended by guidelines.**

4-AASLD, 5-EASL, 6-Asia-Pacific, 7-Japanese and *Expert opinion.
AASLD Diagnostic Criteria for HCC: Liver Nodule on Surveillance Ultrasound or High AFP in a Cirrhotic Liver

Available at http://www.aasld.org/practiceguidelines/Pages/NewUpdatedGuidelines.aspx.
Radiologic Diagnosis of HCC in Cirrhosis

Arterial phase enhancement

Venous phase “washout”

Liver Imaging Reporting and Data System (LI-RADS) Standardize Classification of Liver Nodules on Contrast Enhanced Cross-Sectional Imaging

- **Arterial phase hypo- or iso-enhancement**
 - **Diameter (mm):**
 - **< 20**
 - None: LR-3
 - One: LR-3
 - **≥ 20**
 - None: LR-3
 - One: LR-4
 - ≥ Two: LR-4

- **Arterial phase hyper-enhancement**
 - **< 10**
 - LR-3
 - **10-19**
 - LR-4
 - One: LR-4
 - ≥ Two: LR-4
 - **≥ 20**
 - LR-4
 - One: LR-4
 - ≥ Two: LR-4

Observations in this cell are categorized based on one additional major feature:
- LR-4 – if enhancing “capsule”
- LR-5 – if nonperipheral “washout” OR threshold growth growth

AASLD Guidelines: LI-RADS Diagnostic Algorithm for HCC

LOW-RISK LIVER LESIONS

- **LI-RADS 1** Definitely Benign
 - Return to surveillance imaging in 6 mo
 - Consider repeat diagnostic imaging in ≤ 6 mo

- **LI-RADS 2** Probably Benign
 - Return to surveillance imaging in 6 mo

INTERMEDIATE-RISK

- **LI-RADS 3** Intermediate
 - Repeat or alternative diagnostic imaging in 3-6 mo

HIGH-RISK LIVER LESIONS

- **LI-RADS 4** Probably HCC
 - Recommend multidisciplinary discussion for tailored workup that may include biopsy (select cases), or repeat or alternative diagnostic imaging in ≤ 3 mo
 - If biopsy
 - Pathology diagnosis

- **LI-RADS 5** Definitive HCC
 - HCC confirmed
 - If biopsy
 - Pathology diagnosis

- **LI-RADS M** Malignant, not definitively HCC
 - Recommend multidisciplinary discussion for tailored workup that may include biopsy (most cases), or repeat or alternative diagnostic imaging in ≤ 3 mo
 - If biopsy
 - Pathology diagnosis

Multidisciplinary Liver Tumor Board & Transplant/HB Team

Marrero JA et al. AASLD Practice Guideline HCC. 2018.
Diagnosis of HCC: To Biopsy or Not?

Yes
- Imaging is inconsistent with HCC
- Distinguish HCC from **Intrahepatic Cholangiocarcinoma (CCA)**
 - Poor prognosis
 - 5-year overall survival 8-50%
 - High recurrence rates 30-40%
- Avoids inappropriate treatment and misleading “cure”
- May be required for experimental treatments
- May permit personalized therapy

No
- Not always feasible
- Not needed if high diagnostic certainty based on imaging
- Risk
 - Hemorrhage
 - Tumor seeding (2.7% overall incidence)
- Risk of false negatives
 - Up to 1/3 of biopsies
 - May delay treatment
 - Continue to monitor lesion with imaging

Biopsy is based on clinical picture
No high-risk factors, normal AFP, non-classic radiographic features

HCC Staging and Treatments

Staging

- **Very early Stage 0**: Child-Pugh A, Single < 2 cm, ECOG PS 0-1
- **Early Stage A**: Child-Pugh A-B, Single or 2-3 nodules < 3 cm, ECOG PS 0-1
- **Intermediate Stage B**: Multinodular, ECOG PS 0-1
- **Advanced Stage C**: Portal Vein invasion, N1, M1, ECOG PS 0-2
- **Terminal Stage D**: Any T, N or M, ECOG PS > 2

Treatments

Barcelona Stage

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>STAGE 0</th>
<th>STAGE A</th>
<th>STAGE B</th>
<th>STAGE C</th>
<th>STAGE D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resection</td>
<td>TACE</td>
<td>Sorafenib (1L), lenvatinib (1L), regorafenib (2L), cabozantinib (2L), ramucirumab (2L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RFA, MWA</td>
<td>Resection, OLT, RFA, MWA, TARE, SBRT</td>
<td>TARE, Downsize OLT</td>
<td>Nivolumab (2L), pembrolizumab (2L)</td>
<td>OLT, BSC</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>TARE</td>
<td></td>
</tr>
</tbody>
</table>

Estimated survival time

- >5 years
- >2 years
- 11-13 months (first-line)
- 8-10 months (second-line)
- 3 months
Multidisciplinary Care of Patients With HCC

- Palliative care
- Hepatology
- Radiology
- Medical oncology
- Primary care provider
- Interventional radiology
- Radiation oncology
- Nursing
- Clinical research
- Tumor Registry
- Surgery

Pt
What Is the Best Treatment Option?

Surgery:
- Liver Transplantation
- Resection

Thermal Ablation:
- Microwave (MWA)
- Radiofrequency (RFA)

Transarterial:
- Chemoembolization
- Y-90 microspheres

Systemic Therapies:
- Sorafenib
- Lenvatinib
- Regorafenib
- Nivolumab
- Cabozantinib
- Pembrolizumab
- Ramucirumab
- Clinical Trials
Management of Advanced HCC

BCLC C
Initial Systemic Therapy Options for Advanced HCC

Current Treatment Landscape - 1L Systemic Therapies with TKIs

<table>
<thead>
<tr>
<th>Agent</th>
<th>FDA Indication</th>
<th>Key Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorafenib</td>
<td>Unresectable HCC</td>
<td>SHARP</td>
</tr>
<tr>
<td>Lenvatinib</td>
<td>First-line treatment of patients with unresectable HCC</td>
<td>REFLECT</td>
</tr>
</tbody>
</table>
Palliation of Advanced HCC: Sorafenib

- Prior to 2007, no therapy was of benefit in advanced HCC
- SHARP trial: CTP A pts with advanced HCC randomized to sorafenib 400 BID vs placebo
- Sorafenib delayed progression and prolonged survival from 7.9 to 10.7 mos
- Led to approval by the FDA in 2007 for palliation of advanced-stage HCC
- First-line systemic therapy for unresectable/advanced HCC

Y90 vs Sorafenib in Locally Advanced HCC ± PVT (Stage B and C)

Phase 3 SARAH, Europe/France

- Median Overall Survival
 - Y90 /SIRT: 8.0 months
 - Sorafenib: 9.9 months
 - HR 1.15 (95% CI: 0.94-1.41; P=.18)

Phase 3 SIRveNIB, Asia-Pacific

- Median Overall Survival
 - Y90 /SIRT: 8.8 months
 - Sorafenib: 10.0 months
 - HR 1.12 (95% CI: 0.9-1.4; P=.36)

Y90 versus Sor: Radioembolization has no clinical benefit versus sorafenib in advanced HCC.
SORAMIC Trial: Y90 plus Sorafenib (n=216) versus Sorafenib (n=208) alone did not improve OS.
SIRT + Sor, 12.1 months versus Sor alone 11.5 months (Presented EASL 2018, SORAMIC Trial).
Lenvatinib vs Sorafenib in 1L Treatment in Advanced HCC

- Lenvatinib targets VEGFR axis as well as FGFR 1-3
- Compared lenvatinib to sorafenib in the front line setting with a non-inferiority design (Phase 3 REFLECT)
- Patients with unresectable HCC randomized 1:1
 - Len (n=478: <60kg 8mg, >60kg 12 mg)
 - Sor (n=476)
- Excluded patients with Main PV
- BCLC Stage B/C
 - Len 22% / 78%
 - Sor 19% / 81%
- Lenvatinib is noninferior to sorafenib in OS
 - Statistically significant improvements in PFS, TTP, and ORR for lenvatinib vs sorafenib
- First phase 3 trial in HCC to be positive since sorafenib 2007 (SHARP trial)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Lenvatinib (n = 478)</th>
<th>Sorafenib (n = 476)</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>mOS, mos (95% CI)</td>
<td>13.6 (12.1-14.9)</td>
<td>12.3 (10.4-13.9)</td>
<td>0.92 (0.79-1.06)</td>
</tr>
<tr>
<td>mPFS, mos (95% CI)</td>
<td>7.4 (6.9-8.8)</td>
<td>3.7 (3.6-4.6)</td>
<td>0.66 (0.57-0.77)</td>
</tr>
<tr>
<td>mTTP, mos (95% CI)</td>
<td>8.9 (7.4-9.2)</td>
<td>3.7 (3.6-5.4)</td>
<td>0.63 (0.53-0.73)</td>
</tr>
<tr>
<td>ORR, n (%)</td>
<td>115 (24.1)</td>
<td>44 (9.2)</td>
<td></td>
</tr>
</tbody>
</table>

1L= 1st Line.
Select Treatment-Emergent AEs (Lenvatinib vs Sorafenib)

<table>
<thead>
<tr>
<th>AE, %</th>
<th>Lenvatinib (n = 476)</th>
<th>Sorafenib (n = 475)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Grade</td>
<td>Grade ≥ 3</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
<td>75</td>
</tr>
<tr>
<td>HFSR</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>Hypertension</td>
<td>42</td>
<td>23</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>34</td>
<td>5</td>
</tr>
<tr>
<td>Decreased weight</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Fatigue</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Alopecia</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Dysphonia</td>
<td>24</td>
<td>< 1</td>
</tr>
<tr>
<td>Nausea</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

RESORCE Phase 3: Regorafenib vs Placebo in 2L Advanced HCC

- Pts with HCC with documented radiologic progression on sorafenib (N= 573)
- Randomized 2:1 to Rego (n=379) vs Placebo (n=194)
- Tolerated sorafenib > 400 mg/day for at least 20 of the last 28 days of treatment
- Rego 160 mg PO QD, Days 1-21 of 28-day cycle
- Approved by FDA on April 2017 for HCC previously treated with sorafenib (2L)

Outcomes of the Sequence of Sorafenib Followed by Regorafenib or Placebo

<table>
<thead>
<tr>
<th>Outcomes From start of sorafenib</th>
<th>Regorafenib (n=374)</th>
<th>Placebo (n=193)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median survival, months</td>
<td>26.0</td>
<td>19.2</td>
</tr>
<tr>
<td>Estimated survival, at 3 yrs</td>
<td>31%</td>
<td>20%</td>
</tr>
<tr>
<td>Estimated survival, at 5 yrs</td>
<td>16%</td>
<td>3%</td>
</tr>
</tbody>
</table>

CELESTIAL Phase 3: Cabozantinib vs Placebo in 2L Advanced HCC

- Cabozantinib targets VEGFR axis and MET.
- Pts with advanced HCC radiologic progression on sorafenib
- No more than 2 prior systemic therapies
- Randomized 2:1 to cabozantinib 60 mg QD (n=470) vs placebo (n=237)
- BCLC Stage C: 85% and 84%
- Cabozantinib significantly prolonged OS in patients with previously treated advanced HCC.
- Corresponding to this survival benefit, a longer duration of PFS was also observed
- Positive Phase 3 in 2L setting for advanced HCC with OS and PFS benefit

2L = second line.
Abou-Alfa GK et al. NEJM July 2018.
REACH-2 Phase 3: Ramucirumab for Patients With Previously Treated HCC and Higher AFP (≥400ng/ml) Advanced HCC

- Ramucirumab anti-VEGR2 monoclonal antibody
- Pts with advanced HCC, AFP > 400 ng/mL, BCLC stage B/C, Child-Pugh A, PS 0/1, prior sorafenib
- Randomized 2:1 to ramucirumab 8 mg/kg IV Q2W (n=197) vs placebo (n=95)
- Ramucirumab prolonged OS in patients with previously treated advanced HCC.
- Positive Phase 3 in 2L setting for advanced HCC with OS and PFS benefit
- FDA approved 2L setting

2L = second line.
Immunotherapy as Second Line for Advanced HCC

Both received conditional FDA approval based on Phase 2 non-controlled studies.

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab</th>
<th>Pembrolizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>154 sorafenib-treated patients</td>
<td>104 sorafenib-treated patients</td>
</tr>
<tr>
<td>Patient features</td>
<td>2L or 3L</td>
<td>2L</td>
</tr>
<tr>
<td></td>
<td>Sorafenib-intolerants allowed</td>
<td>Sorafenib-intolerants allowed</td>
</tr>
<tr>
<td></td>
<td>Effective therapy for HBV+ve patients</td>
<td>Effective therapy for HBV+ve patients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No involvement of portal vein trunk</td>
</tr>
<tr>
<td>Response rate</td>
<td>14% regardless of etiology or AFP levels</td>
<td>17% regardless of etiology or AFP levels</td>
</tr>
<tr>
<td>Duration of response</td>
<td>16.6 months in HCV patients, not reached in other etiologies</td>
<td>≥ 6 months in 77%</td>
</tr>
<tr>
<td>mOS</td>
<td>15.1 months (95% CI 13.2–18.8)</td>
<td>12.9 months (95% CI 9.7–15.5)</td>
</tr>
</tbody>
</table>

- Lack of predictive biomarker for response: No difference in response by tumor PDL1 expression. MSI high rare (<2%) in HCC.

HCC Treatment Landscape: Second-Line Options

<table>
<thead>
<tr>
<th>Agent</th>
<th>Key Trial</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabozantinib</td>
<td>CELESTIAL</td>
<td>Child-Pugh A</td>
</tr>
<tr>
<td>Nivolumab</td>
<td>CheckMate-40</td>
<td>Child-Pugh A/B7</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>KEYNOTE-224</td>
<td>Child-Pugh A</td>
</tr>
<tr>
<td>Ramucirumab</td>
<td>REACH-2</td>
<td>Child-Pugh A, AFP ≥ 400 ng/mL</td>
</tr>
<tr>
<td>Regorafenib</td>
<td>RESORCE</td>
<td>Child-Pugh A, tolerated first-line sorafenib</td>
</tr>
</tbody>
</table>
Key eligibility

- Locally advanced or metastatic and/or unresectable HCC
- No prior systemic therapy

Stratification

- Region (Asia, excluding Japan\(^a\)/rest of world)
- ECOG PS (0/1)
- Macrovascular invasion (MVI) and/or extrahepatic spread (EHS) (presence/absence)
- Baseline \(\alpha\)-fetoprotein (AFP; < 400/\(\geq\) 400 ng/mL)

Atezolizumab 1200 mg IV q3w + bevacizumab 15 mg/kg q3w

Sorafenib 400 mg BID

Until loss of clinical benefit or unacceptable toxicity

Survival follow-up

Co-primary endpoints

- OS
- IRF-assessed PFS per RECIST 1.1

Key secondary endpoints (in testing strategy)

- IRF-assessed ORR per RECIST 1.1
- IRF-assessed ORR per HCC mRECIST

\(^a\) Japan is included in rest of world.

\(^b\) An additional 57 Chinese patients in the China extension cohort were not included in the global population/analysis.
OS: Co-Primary Endpoint

<table>
<thead>
<tr>
<th></th>
<th>Median OS (95% CI), moa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atezo + Bev</td>
<td>NE</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>13.2 (10.4, NE)</td>
</tr>
</tbody>
</table>

HR, 0.58 (95% CI: 0.42, 0.79)b

a Median OS (95% CI), moa; 96 patients (29%) in the Atezo + Bev arm vs 65 (39%) in the sorafenib arm had an event. b HR and P value were from Cox model and log-rank test and were stratified by geographic region (Asia vs rest of world, including Japan), AFP level (< 400 vs ≥ 400 ng/mL) at baseline and MVI and/or EHS (yes vs no) per IxRS. c The 2-sided P value boundary based on 161 events is 0.0033. Data cutoff, 29 Aug 2019; median survival follow-up, 8.6 mo.
Confirmed PFS\(^a\): Co-Primary Endpoint

<table>
<thead>
<tr>
<th></th>
<th>Median PFS (95% CI), mo(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atezo + Bev</td>
<td>6.8 (5.7, 8.3)</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>4.3 (4.0, 5.6)</td>
</tr>
</tbody>
</table>

HR, 0.59 (95% CI: 0.47, 0.76)\(^c,d\)

\(P < 0.0001\)^\(^d\)

\(^a\) Assessed by IRF per RECIST 1.1. \(^b\) 197 patients (59%) in the Atezo + Bev arm vs 109 (66%) in the sorafenib arm had an event. \(^c\) HR and P value were from Cox model and log-rank test and were stratified by geographic region (Asia vs rest of world, including Japan), AFP level (< 400 vs ≥ 400 ng/mL) at baseline and MVI and/or EHS (yes vs no) per IxRS. \(^d\) The 2-sided P value boundary is 0.002. Data cutoff, 29 Aug 2019; median survival follow-up, 8.6 mo.
Safety

≥ 10% Frequency of AEs in Either Arm and > 5% Difference Between Arms

- Diarrhoea
- PPE
- Decreased appetite
- Hypertension
- Abdominal pain
- Alopecia
- Asthenia
- Pyrexia
- ALT increased
- Proteinuria
- Infusion-related reaction

PPE, palmar-plantar erythrodysesthesia.

a Safety-evaluable population.
Algorithm of Treatment for Advanced HCC

Front-line

- **Sorafenib**
 - Progressive disease or intolerance

- **Atezo/Beva**
 - Progressive disease or intolerance

- **Levatinib**
 - Progressive disease or intolerance

Second-line

- **Regorafenib**
- **Cabozantinib**
- **Ramucirumab**
- **Nivolumub**
- **Pembrolizumab**

Beyond

- One of the agents the patient has not yet received

Progressive disease or intolerance
Conclusions

- Burden of HCC is increasing
- Screen your at-risk patients with cirrhosis for HCC with ultrasound and AFP every 6 months for early detection
- Early-stage HCC (BCLC A) may be cured with thermal ablation, resection and/or liver transplantation
- Intermediate-stage HCC (BCLC B) palliated with TACE and Y90
- Local measures often fail in tumors with aggressive biology
- Advanced-stage HCC (BCLC C) palliated with sorafenib
 - Newer 1L (lenvatinib) and 2L therapies (regorafenib, cabozantinib, ramucirumab, nivolumab, pembrolizumab)
- Application of therapies may be limited by severity of cirrhosis
- Multidisciplinary collaboration is paramount for optimal outcome