Future NASH Therapies

Christina Hanson, FNP-C, MSN
South Denver Gastroenterology
Englewood, CO
Disclosures

All faculty and staff involved in the planning or presentation of continuing education activities provided by the Annenberg Center for Health Sciences at Eisenhower are required to disclose to the audience any real or apparent commercial financial affiliations related to the content of the presentation or enduring material. Full disclosure of all commercial relationships must be made in writing to the audience prior to the activity. Staff at the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers have no relationships to disclose.
Disclosures

Christina Hanson, FNP-C, MSN

Advisory Board: Salix, Clinical Area – IBS-D and Hepatic Encephalopathy

Advisory Board: Intercept, Clinical Area – PBC

Advisory Board: Phathom Pharmaceuticals, Clinical Area – *H. pylori*

Speakers Bureau: Salix, Clinical Area – IBS-D and Hepatic Encephalopathy

Speakers Bureau: Intercept, Clinical Area – PBC
Pathogenesis of NASH and Related Fibrosis

ACC, acetyl-CoA carboxylase; AOC, amine oxidase, copper containing; ASK, apoptosis signal-regulating kinase; CCR, CC chemokine receptor; DNL, de novo lipogenesis; ER, endoplasmic reticulum; FFA, free fatty acids; FGF, fibroblast growth factor; FXR, farnesoid X receptor; IL, interleukin; JNK, Jun N-terminal kinases; LPS, lipopolysaccharide; NLRP3, nucleotide-binding oligomerization domain and leucine rich repeat and pyrin domain containing protein 3; PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; SCD, stearoyl CoA desaturase; SGLT, sodium-glucose linked transporter; SHP, small heterodimer partner; SREBP, sterol regulatory element binding proteins; TGF, transforming growth factor; TGR5, G protein-coupled bile acid receptor 1; TLR, toll like receptor; TNF, tumor necrosis factor; TR, thyroid receptor; UPR, unfolded protein response VLDL, very low density lipoprotein.

NASH Landscape in 2019: Clinical Programs

©Evercore ISI.
Goals of Any Treatment for NASH

- Improve metabolic abnormalities
- Decrease inflammation
- Prevent / arrest / reverse liver fibrosis
 - AASLD recommends pharmacological treatments aimed primarily at improving liver disease should generally be limited to those with biopsy-proven NASH and fibrosis
- Prevent advanced liver disease, liver failure, liver cancer and related outcomes
- Improve systemic outcomes (eventually)
Sources of Excess Clinical Outcomes in NAFLD and Where Interventions Will Have Greatest Impact

- **NAFL**
- **NASH**
- **NASH with fibrosis**
- **NASH Cirrhosis**

Cardiovascular, CKD and all-cause cancer outcomes

Liver decompensation

Most closely tied to liver-related mortality

Closest to cirrhosis and most likely to benefit from prevention of progression
Goal for Treatment and Drug Development

Resolve NASH – strongest predictor of hepatic fibrosis
Improve fibrosis – strongest predictor of morbidity/mortality
Targets/Emerging Therapies for NASH

GOAL in 20 minutes:
Overview of leading targets for NASH
• PPARs
• GLP-1
• THR β
• Stearoyl-CoA Desaturase-1
• FGF 19 and FGF 21
• FXR
Focus on those targets with therapies in late-stage clinical trials with histologic endpoints
Peroxisome Proliferator-Activated Receptors

Pan-PPAR Lanifibranor: The NATIVE Trial

A 24-week, Phase 2b study of 247 participants with NASH

Interventions: Placebo vs pan-PPAR agonist lanifibranor 800 mg/day and 1,200 mg/day

Safety: Generally well tolerated. Mild weight gain comparable with PPARγ effects

ITT Primary outcome: ≥ 2 point improvement of the SAF activity score (ballooned hepatocytes and inflammation) and no worsening of fibrosis at 24 weeks

ITT Secondary outcome: Improvement of fibrosis by at least one stage and no worsening of NASH

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Participants meeting endpoint (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Lanifibranor 800 mg</td>
<td>28</td>
<td>0.53</td>
</tr>
<tr>
<td>Lanifibranor 1,200 mg</td>
<td>42</td>
<td>0.011</td>
</tr>
</tbody>
</table>

ITT, intention to treat; PPAR, peroxisome proliferator-activated receptors; SAF, steatosis, activity, and fibrosis. Francque SM et al., AASLD Liver Meeting, Abstract 12, 2020.
Metabolic Effects of GLP-1 Receptor Agonists

GI, gastrointestinal; GLP-1RA, glucagon-like peptide-1 receptor agonist.

Semaglutide in NASH Trial

A 72-week, Phase 2 study of 320 participants with NASH, fibrosis stage 1, 2, or 3

Interventions: Placebo vs semaglutide 0.1, 0.2 or 0.4 mg subcutaneously daily

Primary outcome: Resolution of NASH and no worsening in liver fibrosis

GLP-1, glucagon-like peptide-1; NASH, non-alcoholic steatohepatitis; OD, once-daily.
Thyroid Hormone Receptor β Selective Agonists

- Good biological rational: More overt hypothyroidism in NASH1,2

\[\text{THR} \beta \]
(Liver, Brain)
Lipid metabolism
inflammation

\[\text{THR} \alpha \]
Heart rate,
contractility

\[\text{Phase 2} \quad \text{VK2809} \]
\[\text{Phase 3} \quad \text{Resmetirom} \]

BA, bile acid; LDL, low-density lipoprotein; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PPAR, peroxisome proliferator-activated receptor; THR, thyroid hormone receptor.

Resmetirom (MGL-3196) for NASH

36-week phase 2 trial in 125 participants with NASH (NAS ≥4 with F1–3)\(^1\)

Interventions: 2:1 80 mg resmetirom *versus* placebo

Primary outcome: Change from BL in hepatic fat fraction at Week 12 and 36

Safety: Adverse events were mostly mild or moderate and were balanced between groups

ALT, alanine aminotransferase; ApoB, apolipoprotein B; BL, baseline; LDL-C, low-density lipoprotein cholesterol; NAS, non-alcoholic fatty liver disease activity score.

Stearyl-CoA Desaturase-1 (SCD-1) Inhibition

Aramchol: ARREST Results (Key Outcomes at Week 52)

52-week phase 2b trial in 247 participants with NASH, NAS ≥4 and liver fat 5.5%

Interventions: 2:2:1 Aramchol 400 mg QD versus 600 mg QD versus placebo

Primary endpoint: Change in liver fat at Week 52 (MRS)

Safety: Aramchol was generally well tolerated. No difference in adverse event rate vs placebo

≥5% absolute reduction from baseline

- Placebo (n=41): 24.4%
- Aramchol 400 (n=90): 36.7%
- Aramchol 600 (n=83): 47%

Aramchol 600 versus placebo p=0.0279
Or 2.77 (95% CI: 1.12-6.89)

NASH resolution without worsening of fibrosis

- Placebo (n=40): 5%
- Aramchol 400 (n=80): 7.5%
- Aramchol 600 (n=78): 16.7%

Aramchol 600 versus placebo p=0.051
Or 4.74 (95% CI: 0.99-22.7)

BL, baseline; CI, confidence interval; MRS, magnetic resonance spectroscopy; NAS, non-alcoholic fatty liver disease activity score; NASH, non-alcoholic steatohepatitis; OR, odds ratio; QD, once daily.

Fibroblast Growth Factors (FGF) 19 and 21

Phase 2

FGF-19 Agonist
- Aldafermin (FGF-19)

FGF-21 Agonists
- Pegbelfermin (FGF-21)
- Bio89-100 (FGF-21)
- Efruxifermin (FGF-21)

Efruxifermin (FGF-21) for NASH

- NASH with NAS ≥ 4 and F1-3 fibrosis. Liver fat ≥ 10%.
- 80 subjects with 1:1:1:1 to 25 mg, 50 mg, 70 mg vs placebo
- Subjects achieving ≥ 30% reduction in MRI-PDFF had liver biopsy

Clinically meaningful reductions in glycemic control, lipoprotein levels
11 of 40 EFX patients (28%) had ≥ 2 points improvement in fibrosis
Farnesoid X Receptor (FXR) Agonists

FXR agonists are not approved for the treatment of NASH. FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid X receptor; LPS, lipopolysaccharide; SREB-1, sterol regulatory element-binding protein-1; TG, triglyceride; TGFβ, transforming growth factor beta; VLDL, very-low-density lipoprotein. Adapted from Jansen et al. Nat Rev Gastroenterol Hepatol. 2014;11:55–67.
Phase 3 trial in 1,968 participants with NASH, NAS ≥4 and F2/F3

Interventions: 1:1:1 OCA 10 mg QD *versus* 25 mg QD *versus* placebo

Primary outcomes: Improvement in fibrosis with no worsening in NASH and NASH resolution with no worsening of fibrosis

Primary efficacy endpoints (ITT population N=931)

- Fibrosis improvement by ≥1 stage with no worsening of NASH
 - Placebo (n=311): 12%
 - Obeticholic acid 10 mg (n=312): 18%
 - Obeticholic acid 25 mg (n=308): 23%
 - *p* = 0.0002

- NASH resolution without worsening of fibrosis
 - Placebo (n=311): 8%
 - Obeticholic acid 10 mg (n=312): 11%
 - Obeticholic acid 25 mg (n=308): 12%
 - *p* = 0.18

Obeticholic acid is not approved for the treatment of NASH.

*Statistically significant in accordance with the statistical analysis plan as agreed with FDA. All other *p* values were nominal; ITT, intent-to-treat; NAS, non-alcoholic fatty liver disease activity score; NASH, non-alcoholic steatohepatitis; OCA, obeticholic acid; QD, once daily.

Why Are Combination Therapies Needed in NASH?

- Efficacy of single drugs has been limited and disappointing
 - High profile failures include:
 - Simtuzumab
 - Selonsertib
 - Elafibranor
 - Cenicriviroc
 - Celgene
 - Obeticholic acid?
- Therefore, combinations may:
 - Enhance efficacy
 - Create synergistic activity and/or capture more patients if different mechanisms drive disease in different patients
Current Approach to Combinations

- Use two drugs with separate targets/mechanisms of action
- Choice of combinations based on strategic considerations more than experimental data

 - *e.g. A company has two assets ‘in-house’ or a strategic partner*
 - « Metabolic target » + « Anti-fibrotic target »
 - « Metabolic target » + « Anti-inflammatory target »
 - « Anti-inflammatory target » + « Anti-fibrotic target »
Conclusions

• Multiple treatments that interrupt the pathophysiological properties of NASH are in development
• There is no FDA-approved drug for NASH – only one drug (OCA) is under FDA NDA review
• The landscape of emerging therapies for NASH is robust
• Emerging therapies targeting metabolic risk demonstrate benefit against NASH which may translate into positive outcome on halting or delaying time to fibrosis progression
• Combination therapy using drugs with different mechanisms-of-action is likely the future of NASH treatment