2021 Fourth Annual National Conference

September 9-11, 2021

Red Rock Hotel – Las Vegas, NV

Jointly provided by the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers.
NASH in IBD: A Grown Problem
An Additional Phenotype

Amanda Chaney, DNP, APRN, FAANP, AF-AASLD
Assistant Professor of Medicine,
Mayo Clinic, College of Medicine
Disclosures

All individuals involved in control of the content of continuing education activities provided by the Annenberg Center for Health Sciences at Eisenhower are required to disclose to the audience any real or apparent commercial financial affiliations related to the content of the presentation or enduring material. Full disclosure of all commercial relationships must be made in writing to the audience prior to the activity. All staff at the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers have no relationships to disclose.
Disclosures

Amanda Chaney, DNP, APRN
Author: Springer Publishing, Clinical Area – Liver disease
Advisory Board: Salix, Clinical Area – Hepatic Encephalopathy
Speaker Bureau: Mallinckrodt, Clinical Area – Hepatorenal Syndrome
Disclosure

Slides provided by:
Heidi Drescher RD, MMS, PA-C
NASH in IBD: A Growing Problem
An Additional Phenotype

Cross Talk!
Objectives

1. Name the “Link” between NAFLD/NASH and IBD
2. Recognize the Roles of Secondary Bile Acid
3. Describe Unique Characteristic of the IBD - NAFLD/NASH Patient
4. Discuss Possible Predictors of NAFLD/ NASH in IBD Patients
NAFLD Prevalence

-30-45% US POPULATION
-70-90% OF OBESE & DIABETICS
>$3 Billion in Expenditures

Typical Risk Factors of NAFLD: METABOLIC SYNDROME

- Obesity
- Insulin Resistance
- Diabetes
- Dyslipidemia
- HTN
- Age
Complex Pathogenesis

“MULTI-HIT” Phenomenon

| **Lipid Accumulation** | - Poor Diet & Inactivity
- Increased De Novo Synthesis in Liver
- DOWN reg B-Oxidation and UP Reg Insulin Resistance |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidative Stress and Hepatocyte Death</td>
<td>- ER- Activates NF-KB Release and Remodeling</td>
</tr>
</tbody>
</table>
| **Cytokine Release** | - Kaupffer and Stellate Cells active IL-6, TNFa, IL-1B, TGF-B, along with TLR, NLR, JAK2, STAT3 signaling
- Infiltration of MAC, DC, Tcells PMN & INSULIN RESISTANCE |
| **Organ X-talk** | - Adipose tissue is active, suppress B-oxidation and increase Insulin Resistance
- Dysbiosis/ Translocation BA cant appropriately conjugate |

Complex Pathogenesis “MULTI-HIT” Phenomenon

Lipid Accumulation
- Poor Diet & Inactivity
- Increased De Novo Synthesis in Liver
 - Down reg B-Oxidation and UP Reg Insulin Resistance

Oxidative Stress and Hepatocyte Death
- ER- Activates NF-KB release and Remodeling

Cytokine Release
- Kaupffer and Stellate Cells active IL-6, TNFa, II-1B, TGF-B, along with TLR and NLR
- Infiltration of MAC, Tcells PMN & INSULIN RESISTANCE

Organ X-talk
- Adipose tissue is active, suppress B-oxidation and increase Insulin Resistance
- Dysbiosis/ Translocation BA cant appropriately conjugate

Prevalence of NAFLD by MS, Underweight and IBD

Metabolic Syndrome
- 19-34% by US
- 34-46% by BX

Underweight
- Underestimated
- Understudied
- Overlooked
- Prominent in Anorexia Nervous and AIDS population

IBD Patients
- 8-59%
 - 26-40% CD
 - 26-36% UC
- 6-10% Fibrosis
- 75% LEAN and UNDERWEIGHT

The Argument:

- Is the LEAN IBD Overlooked for NASH Evaluation?
- Why would this be?
- Should it become part of Health Maintenance in our GI assessment of IBD patient?

Who has IBD?
Who has NAFLD?
“Multi Hit” Pathogenesis of NAFLD

- Lipid Stores
- Cytokine Release
- Ox. Stress
- NAFLD
- Organ X-Talk
*Primary Bile Acids made in Liver

*Conjugate with Taurine and Glycine to Bile Salt drain trough CBD to Small intestine

*MICROBIOTA in Small intestine deconjugate to Secondary Bile Acids

Ileal Re-uptake

~5% Bile Acid loss in Stool

Creating Secondary Bile Acids

Liver

Cholesterol
 ↓
Hydroxycholesterol
 ↓

Primary bile acids
 (CA, CDCA, αMCA*, βMCA*)
 ↓

Hepatic conjugation
 (glycine, taurine)
 ↓

Bile salts
 (T(G)-CA, T(G)-CDCA, TαMCA*, TβMCA*)

 ↓

Deconjugation, enzymatic modifications (microbiota)

Secondary bile acids
 (CDCA, CA, DCA, LCA, UDCA, ωMCA*, HCA*, HDCA*, MDCA*)

Gut

Healthy Biome Promotes Deconjugation

- Bacteroides
- Bifidobacteria
- Proteobacteria
- Strepocaccacea
- Enterobacteriaceae
- Ruminococcacea

“Good Bacteria”

Organ Cross Talk

NAFLD
- BA limit TG synthesis
- Improve BG

IBD
- Limits Translocation
- Limits inappropriate Immune Response

HEALTHY BIOME
Cytokine Functions:
Secondary Bile Acid Functions – LIGANDS

Bile Acid Receptors are *Ligands for* **Hormones and Cytokines**

- **Farsenoid X**
 - Down regulates hepatic Lipid Production
 - Improves Insulin Signaling & B- Oxidation
 - Decrease expression of NF-KB, Inhibits TNF, IL1-B, II-6, MAC and DC signaling
 - Promotes Treg II-10

- **RORyx & GPBAR1**
 - Inhibits Transcription in TH17, TH1 pathway
 - Decrease IL-17A,II-23A, INF-y
 - Increase Treg
 - Inhibits NLR

Secondary BA Prevent NAFLD Progression

Secondary BA
Bind Receptor
Inhibit Inflammatory Cascade
Reduces Fatty Content & Modulates Insulin
Organ Cross Talk in the Pathogenesis of NAFLD

Metabolic Syndrome
- Dysbiosis
- **No Conjugation to Secondary Bile Acid**
- **No activation of Receptors**

Crohns / Colitis
- Ileal Surgical Resection or Inflammation
- Diminished BA Reuptake in Ileum & Liver
- Limited Receptor/Ligand Activation

Organ X-talk is the Link!
Typical Risk Factors of NAFLD
METABOLIC SYNDROME

Obesity
Insulin Resistance
HTN
Diabetes
Dyslipidemia
Age
Characteristic of IBD Patients With NAFLD

- Male Predominant
- CRP HIGH
- LFT/ PLATE WNL
- Younger < 45 yo
- Non-obese (BMI 22-26) =/-5kg

Proposed **Predictors** of NAFLD in IBD Patients

- Disease Activity
- Disease Duration
- Dysbiosis/Permeability
- Surgical Resection
- +/- Medications
- TPN

Milder IBD
1. < 1 Flare a year
2. Regardless of Metabolic Risk

Moderate IBD
1. > 1 Flare a year
2. Extensive geographic location
3. Severity
4. Surgical Intervention
5. Regardless of Metabolic Risk

S1, S2 Disease

S3 Disease

Proposed Additional Mechanisms to Pathogenesis of IBD-NASH Phenotype

<table>
<thead>
<tr>
<th>Surgical Resection</th>
<th>Parenteral Nutrition</th>
<th>Medication</th>
</tr>
</thead>
</table>
| **Interrupt Entero-Hepatic Circulation** | • Not Unique in IBD
• Observed NAFLD by day 5 | • Corticosteroid
– *Exacerbate* not cause |
| • 1*BA to 2* BA | | • MTX in RA *not IBD* |
| – Deconjugation | | • Anti-TNF protects+/– |
| • EFA & Carnitine Deficiency | | |

IBD Medications

<table>
<thead>
<tr>
<th>Category</th>
<th>Medication</th>
<th>Effect</th>
</tr>
</thead>
</table>
| **ANTI-TNF** | | • Shared Cytokine, Decreases proinflammatory signaling in the Stellate Cells and subsequent remodeling (NF-KB)
• Indirectly Increases Insulin Signaling, result is improved Gluconeogenesis and B-oxidation |
| **IMM** | | • AZA may worsen
• MTX 13.1mg/wk = in RA, NOT IBD |
| **Steroids** | | • Rodant Studies direct correlation, not Human
• Exacerbate in Human |

Looking Ahead for the IBD Patient

EIM ?

Impact IBD TX?

?When Fibroscan

?MS NAFLD and TX
Summary

- NAFLD is not Limited to the Metabolic Syndrome Patient
- NAFLD has a Heterogenous Population and of Various Phenotypes
 - IBD = Non-obese < 45 yo, Male, LFT/PLATE wnl
- Early Screening is May Indicated In IBD
 - CD > UC

Will the Presences of NAFLD Change your Prescribing Practice in IBD?