2021 Fourth Annual National Conference

September 9-11, 2021

Red Rock Hotel – Las Vegas, NV

Jointly provided by the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers.
Liver Incidentalomas

Vicki Shah PA-C, DMSc, MMS
Lead APP Solid Organ Transplant Hepatology
Rush University, Chicago IL
September 2021
Disclosures

All individuals in control of the content of continuing education activities provided by the Annenberg Center for Health Sciences at Eisenhower are required to disclose to the audience any real or apparent commercial financial affiliations related to the content of the presentation or enduring material. Full disclosure of all commercial relationships must be made in writing to the audience prior to the activity. All staff at the Annenberg Center for Health Sciences at Eisenhower and the Gastroenterology and Hepatology Advanced Practice Providers have no relationships to disclose.
Disclosures

Vicki Shah PA-C, DMSc, MMS
Advisory Board: AbbVie, Clinical Area – HCV
Research Funding: Gilead, Clinical Area – HCV
Advisory Board: Gilead, Clinical Area- HDV
Objectives

• Review common hepatic lesions with radiology findings and terminology
• Discuss the treatment recommendations based on lesion
• Differentiate between benign and malignant liver lesions
The differential diagnosis is broad

- **Cirrhosis-associated hepatocellular nodules**
 - RN
 - LGDN
 - HGDN
 - eHCC
 - pHCC

- **Non-HCC malignancy**
 - ICC
 - CC-HCC
 - MetS (rare)
 - Lymphoma (rare)

- **Non-hepatocellular benign**
 - Cysts
 - Hemangiomas

- **Confluent fibrosis**

- **Treated lesion**

- **Non-mass lesion**

Pseudolesions
- Artifact
- Vascular pseudolesion
- Hypertrophic pseudomass

- Fat deposition or sparing
- Iron deposition or sparing
- Hemorrhage or edema

Courtesy of Dr. Claude Sirlin.
Common Benign Liver Lesions

• Hepatic Cysts
• Hepatic Hemangioma
• Focal Nodular Hyperplasia (FNH)
• Hepatocellular Adenoma (HCA)
Liver Cysts

- Clinical presentation
 - Generally asymptomatic, found incidentally on imaging studies
 - Clear fluid-filled cavities
 - Most prevalent in the female population and increase with age
- Simple hepatic cysts are the most common type
- Manage conservatively
- Most do not require any treatment
Liver Cysts

- Rare incidence of cystadenoma – solid component on MRI
 - 10% lifetime risk of malignant transformation into cystadenocarcinoma
- Other: liver metastases, infectious, congenital
- However, cysts > 4 cm should be monitored with ultrasound. If the cyst is stable for 2 to 3 years, no need for follow-up
- If large, symptomatic
 - Percutaneous aspiration
 - Laparoscopic deroofing
 - Complete cyst resection
Benign Liver Lesion Distribution

- Review of US for over 45,000 patients
 - Hepatic cysts 5.8%
 - Hepatic hemangioma 3.3%
 - FNH 0.2%
 - Hepatic adenoma 0.04%

Hemangioma

- Most common benign vascular lesion (0.4-20%) also referred to as cavernous hemangiomas of unknown etiology
 - Thought to arise from congenital hamartomas that increase in size
 - Or dilation of existing blood vessels in normally developed tissue
- Often solitary lesions. 40% of patients may present with multiple lesions in both lobes
- Size range: < 1 cm to > 5 cm, well circumscribed discrete lesions
- Found in all ages; typically discovered between 30-50 years of age
- Male/Female: 1:2/6
- Estrogen sensitivity: possible

Hemangioma

Clinical presentation

- Typically found incidentally and majority of patients are asymptomatic
- Lesions > 4 cm may cause symptoms RUQ discomfort or abdominal pain, nausea, early satiety and anorexia
- Acute abdominal pain from thrombosis or bleeding & may last up to 3 weeks
- Hepatic biochemical tests: WNL

Hemangioma

- **Ultrasound**
 - Hyperechoic
- **CT**
 - Early progressive centripetal enhancement
 - Delayed venous phase

Courtesy of Claude Sirlin, MD.
Hemangioma

Clinical course

- No evidence of malignant transformation
- No treatment needed in most
- If large size, symptomatic
 - Surgical resection
 - Arterial embolization

Focal Nodular Hyperplasia (FNH)

- Second most common benign liver lesion
- Incidental findings in majority of cases
- All ages, women: 50-80%
- Asymptomatic: 50-90%
- OCP: may grow
- Location: often sub-capsular
- Size: majority < 5 cm
- Number: 7-20% multiple
- Hepatic biochemical tests: WNL

Focal Nodular Hyperplasia

Imaging

• Abdominal ultrasound: variably hyper, hypo, or isoechoic
 Difficult to differentiate from adenoma vs malignant lesion

• CT w/wo contrast:
 – Pre-contrast: hypo or iso-dense
 – Arterial phase: hyper-dense lesion
 – Portal venous phase: iso-dense with central scar hyper-dense
 – Popcorn like appearance

• MRI abd w/wo contrast
 – T-1 weighted imaging appears iso-intense
 – T-2 weighted imaging: to hyper-intense with central scar on delayed phase
 – Popcorn like appearance

Focal Nodular Hyperplasia

Clinical course
• Enlargement in setting of OCP and during pregnancy are reported
• No evidence of malignant transformation

Manage conservatively
• Referral to a hepatologists to rule out liver disease and confirm liver lesion
• OCP not contraindicated
• 6-12 month f/u imaging study in women who continue OCP

Hepatocellular Adenoma (HCA)

- Uncommon, typically occurs in women
- Oral contraceptive steroids (OCP), causally related, duration > 5 yrs
- Other associated conditions: anabolic androgen use, GSD, fatty liver, obesity, DM and pregnancy.
- Number: usually single, may be changing
- Hepatic biochemical tests: general WNL unless bleeding
- Have been associated with malignant transformation, spontaneous hemorrhage, and rupture
Hepatocellular Adenoma

Imaging:

- **Abdominal ultrasound:**
 - Features non-specific hyper-echoic lesions
 - Hypo-echoic central region noted on lesions that have bled

- **CT abd w/wo contrast**
 - Non-contrast: iso-dense, well-demarcated lesions
 - Arterial phase: peripheral enhancement in early phase
 - Portal venous phase: centripetal flow is characteristic
 - Late phase: iso-dense to hypo-dense

- **MRI abd w/wo contrast**
 - Well-demarcated but highly variable
 - T1-weighted image appears hyper-intense d/t fat and glycogen content of hepatocytes
 - T2-weighted image appears heterogeneous

HCA Subtypes by Molecular and IHC Markers

<table>
<thead>
<tr>
<th></th>
<th>HNF-1α: stain</th>
<th>Inflammatory (IHCA)</th>
<th>β-catenin: stain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>36-46%</td>
<td>18-44%</td>
<td>13-14%</td>
</tr>
<tr>
<td>Genetic mutation</td>
<td>Mutations in TCF1, FABP1 & UGT2B7 down-regulated</td>
<td>Not known</td>
<td>Mutations in CTNNB1, GLUL & GRP49 over-expressed</td>
</tr>
<tr>
<td>Pathological characteristics</td>
<td>Intramural steatosis, lobulated contours</td>
<td>Tumoral peliosis, inflammatory infiltrate, sinusoidal dilatation, dystrophic vessels</td>
<td>Cytological abnormalities, acinar pattern (pseudo-glandular formation)</td>
</tr>
</tbody>
</table>
| **MRI characteristics** | • T1W chemical shift sequence: diffuse signal dropout
• T2W: iso- or slightly hyperintense signal
• Gd: moderate arterial enhancement; without persistence during delayed phase | • T1W chemical shift sequence: no or focal signal dropout
• T2W: marked hyperintense signal
• Gd: strong arterial enhancement; with persistence during delayed phases | • Inflammatory subtype has same appearance as IHCA
• Non-inflammatory: heterogeneous with no signal dropout on chemical shift
• T1W/T2W: strong arterial enhancement and delayed washout |
| **Background liver steatosis** | +/- | ++ | +/- |
| **Risk for HCC** | Low | Low | High (esp. in men) |

Hepatocellular Adenoma

Clinical course:
- Typically asymptomatic but may have abdominal discomfort with larger lesions.
- Symptoms: sudden abd pain with hypotension may be a result of rupture and peritoneal bleeding.

Management controversial
- Referral to a hepatologists to rule out liver disease.
- Depends upon HCA subtype, symptoms, location, size, number and certainty of diagnosis.
- Small lesions < 5 cm in asymptomatic women on OCP:
 - d/c OCPs and repeat imaging in 6 months with tumor markers.
- Advised against pregnancy since behavior of adenoma is unpredictable.
- Symptomatic with large adenomas:
 - Surgical resection for lesions > 5 cm and/or pt's with symptoms.
 - Transarterial embolization or ablation.
 - Liver transplant: rare.

Malignant Liver Tumors

Primary

• Hepatocellular carcinoma (HCC)
• Intrahepatic cholangiocarcinoma (ICC)
• Combined HCC-CC
• Fibrolamellar

Metastatic

• Hypovascular: GI tract, lung, breast and head/neck tumors
• Hypervascular: RCC, carcinoid, sarcomas, breast, melanoma, insulinomas and carcinoid
HCC Diagnosis

- Imaging is important
 - Majority of HCCs are diagnosed by imaging without biopsy
- Imaging is challenging
 - Cirrhotic liver with regenerative nodules
 - Not all HCCs are the same
- Major Criteria:
 - APHE (arterial phase hyper-enhancement) and washout
 - LI-RADS (Liver Imaging Reporting and Data System)
 - BCLC

Biopsy Needed?

- No: If hemangioma, FNH or HCA diagnosed clinically and radiologically
- Imaging studies reliable in ~ 95% of cases
- If uncertain, follow with imaging studies
- Biopsy: often a small core or only cytology; may miss the malignancy; risk of bleeding or beading

Summary

• Most common benign liver lesions: Cyst, Hemangioma, FNH and HCA

• The most common malignant liver lesion is HCC

• Imaging reliable for diagnosis
 – Correct Imaging Modality
 – Interpreted by a trained radiologist
Special Thanks

- Chronic Liver Disease Foundation
- Barbara Andrews, FNP-BC
- Corrie Berk, DNP, MBA
- Nancy Reau, MD
Thank You

Vicki Shah PA-C, DMSc, MMS
Vicki_shah@rush.edu